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Foreword

	

One of the goals of the U .S. Army Corps of
Engineers is to mitigate, in an economically-
efficient manner, damage due to floods .
Assessment of the risk of flooding is a critical step
in deciding how best to accomplish this goal . This
pamphlet describes how we in the Corps estimate
hydrologic risk, how we use these estimates in
project planning, and how the randomness of nature

s our task difficult .

PAT M. STEVENS, IV
Colonel, Corps of Engineers
Chief of Staff
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Summary

	

Risk is exposure to an undesirable event .
Probability is a measure of risk . The probability of
a flood is estimated by analyzing historical flood-
flow data. The quality of the estimate is related to
the quality and quantity of the historical data: a
long record of dependable flow data permits us to
make a more reliable estimate of the probability of
flooding .

Risk estimates play an important role in water-
resources project formulation and development by
the Corps of Engineers. Our projects are designed
to reduce the risk of undesirable economic,
environmental, and social consequences of
flooding . But floods occur randomly, so the
effectiveness of the plans varies from year to year .
A project that eliminates all damage and saves
many lives one year may not be large enough to
eliminate all damage the next year . To resolve this
dilemma, we use the long-term average damage as
an index of damage potential . This average is
computed with estimates of the probability of
flooding . Thus the projects are developed
considering the consequences of a wide range of
floods and the benefits of reducing the adverse
impacts .



Introduction

	

With unlimited funds, the Corps of Engineers could
effectively eliminate all existing flood damage at
any location in the United States . A giant reservoir
or levee could be constructed to control the greatest
imaginable flood, eliminating all damage due to
that flood and to any smaller flood . Practically, the
adverse environmental and social impacts and the
cost of such a gigantic project preclude its
construction . Fortunately, in most circumstances, a
smaller project will reduce significantly the damage
at less cost and with minimum environmental
impact .

A dilemma exists concerning project size selection :
just how much smaller can the project be? Floods
occur randomly, so a project designed to eliminate
damage due to the 1935 flood may be too small to
eliminate all damage in 1988 . Likewise the same
project may be unused in 1988 if flow is low .

To resolve this dilemma, the Corps considers the
risks of flooding, and weighs the consequences of
the entire range of possible floods in its
development program .
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What is risk?

	

Risk is exposure to an undesirable event . Daily we
are confronted with risks . We weigh, with our
value systems, the likelihood of the possible
outcomes and the benefits and costs of the
outcomes, and make decisions accordingly . For
example, I know that 48,000 automobile accidents
occur annually in the U .S. Nevertheless, I took the
risk and drove to work this morning . I felt that the
benefits of the action (expediency and comfort)
justified taking the risk .

Probability is a numerical index of risk ; it is a
measure of the likelihood that the undesirable event

t will occur. If the event is sure to occur, the
probability is 1 .0, and if it cannot occur, the
probability is 0 .0 .

As a benchmark, the table that follows shows the
estimated annual probability of various undesirable
events. This table is excerpted from the article by
Richard Wilson and E.A.C. Crouch in the 17 April

No rules exist to explain how we must interpret
these probability estimates ; events with equal
probability aren't equally undesirable, because the
impacts aren't equal . For example, I live in an area
"protected" by a levee because I enjoy the location .
On the other hand, I don't smoke because I feel the
risk of cancer is too great . Yet the annual
probability of cancer is less than the probability of

1

1987 issue of Science .

Event Annual probability

Electrocution 0 .0000053
Airline accident 0.00005
Motor vehicle accident 0 .00024
Some form of cancer 0 .0028
"100-year" levee

overtopping 0.01
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How is the
probability of
flooding
estimated?

levee overtopping . The decision depends on my
perception of the benefits and my aversion to the
risk .

Probability estimates of undesirable events can be
determined by

1 . Subjective weighing . If you asked a
geologist to estimate the probability that you will
find rock when you dig in your yard to install a
new water line, the estimate provided is likely to be
a subjective weighing of the probability, based on
experience and intuition .

2. Analysis of the probabilities of all minor
events that contribute to the occurrence of
undesirable event . An example of this is
estimation of the probability of a nuclear power
plant accident. To make such an estimate, analysts
define all the separate events that could lead to an
accident, estimate the probability of each, and add
the probabilities .

3 . Observation of what has happened in the
past . If the event has occurred in the past, we can
use this information to estimate the likelihood that
it will occur in the future . This is the approach
commonly used to estimate probability of flooding .

Estimating the probability of flooding from
historical data is similar to assembling a jigsaw
puzzle, without knowledge beforehand of the
picture to be produced when assembly is complete .
With the puzzle, we draw randomly from the
puzzle box a single piece and guess the object
shown and the shape of the puzzle . Then we try to
assemble the puzzle pieces with this guess in mind .
In statistical jargon, the entire set of unassembled
pieces is the parent population, and each
individual piece that we select is a sample of the
parent population .

In the case of flooding, the parent population is the
entire range of flow that could occur . A sample is a

two successive years may not justify a large
expenditure if the annual probability of these floods
is low .

The estimates of the flooding probability with a
statistical distribution flooding are our best
estimates, based on short records . Just as we may
draw an incorrect conclusion regarding a jigsaw
puzzle picture if we have only a few pieces of the
puzzle, so may we draw an incorrect conclusion
regarding the statistical distribution of flow . Even if
we draw the correct conclusion regarding the
distribution, we may estimate incorrectly one or
more of the parameters . With a longer record, we
have more confidence in our conclusions .

The selected project scale may, in fact, not be
the best over the long term. Project scale is a
function of flow probability estimates which are
used in the expected-value analysis . If these
estimates are incorrect, the scale selected may not
be the best, and the net benefit of the project may
be less than anticipated . The return on investment,
in that case, will also be less than expected .

Economic analysis based on statistical analysis is
not the sole criterion for plan formulation . The
Corps of Engineers historically has recognized the
limits on statistical analysis, and has incorporated
additional considerations in its water-resources
development program . For example, if the risk of
loss of life is significant, a levee may be designed
to provide a higher level of protection than justified
economically .
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But, the damage reduced by a project of any size
varies randomly from year to year because the flow
varies randomly . For example, a levee project
designed to eliminate all damage for flows of
100,000 cfs is really larger than required if the flow
is only 50,000 cfs. This is a dilemma : how should
the annual damage be estimated, given that it
changes randomly?

The procedure used by the Corps to estimate annual
damage is expected-value analysis . This risk-based
procedure computes average annual damage
considering all possible flow magnitudes, the
damage corresponding to each, and the estimated
probability of occurrence . The damage is weighed
by the probability, and the results are totaled . For
example, the damage due to the 0 .01-probability
flow is weighed by 0 .01, and the damage due to
the 0 .10-probability flow is weighed by 0 .10. This
weighs the damage due to rare events less than the
damage due to frequent events. The results, the
expected annual damage, is the average yearly
damage. With this procedure, the best size for the
project is the size that maximizes .

Expected annual damage without any action
- expected annual damage with the project
- annual project cost

net annual benefit

	

(7)

What does this

	

The historical frequency of flooding may not
mean to you?

	

adequately represent the probability of future
flooding. Our intuition may deceive us . If we have
lived near a stream, we often feel that we have a
good knowledge of historical floods . But as the
experiments with the die demonstrate, 10, 20, or
even 30 years of knowledge may not be sufficient
to draw reliable conclusions about probability . A
project that is designed so that the expected annual
damage-reduction exceeds the cost may seem
excessively large in scale, based on our limited
exposure . On the other hand, damaging floods in

I

set of flows that have been observed in the past .
The goal is to quantify the risk of future flooding
based on these observations of historical flooding .

The simplest approach to probability estimation
with historical data is to assume that the probability
of an event occurring equals the relative frequency
with which the event occurs historically . The
relative frequency of an event can be defined as

number of actual occurrences
Relative frequency =	 (1)

number of possible occurrences

Suppose, for example, that damage in an area
adjacent to a stream begins when flow in the stream
exceeds 100,000 cubic feet per second (cfs) . To
estimate the probability that the annual maximum
flow will exceed this value, we could tabulate the
maximum value for each year, count the years in
which the flow exceeds 100,000 cfs, and divide by
the total number of years for which we have
observations . For example, if the maximum flow
for two years of the last 100 years exceeded
100,000 cfs, we would estimate the annual
probability of exceeding 100,000 cfs as 2/100 or
0.02 .

The difficulty with estimating flood probability
with the relative frequency approach can be
illustrated with a simple example : estimating with
the relative frequency the probability of rolling a 6
with an honest, 6-sided die . In this case, we know
that the true probability is 1/6 = 0 .1666, so the
error in our estimates is easy to see . The relative
frequency of rolling a 6 with the die is defined as

number of times 6 is rolled
Relative frequency =	(2)

number of times the die is rolled

If on the first try, I roll a 6, the relative frequency,
according to Eq . 2 is 1/1 . We estimate the
probability of rolling a 6 as 1 . This is not a very

3



Fig. 1 . - Results
of Rolling a Die
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good estimate. Now imagine that on the second try,

	

Fig. 4 . - Estimates
I roll a 2 . The relative frequency now is 1/2, and

	

of 0.01-
the probability estimate is 1/2 or 0 .5 . The estimate

	

probability Flow,
still is not very good, but it is getting better .

	

Dan River

Fig . 1 shows the results of an experiment in which
we rolled a die thousands of times and applied Eq .
1 after each roll to compute the relative frequency
estimate of the probability of rolling a 6 . In this
figure, the relative frequency is plotted as a
function of the number of rolls . In these trials, each
success (a roll of a 6) has a significant effect on the
computed. relative frequency. Notice, for example,
that in the first 50 or so rolls, a few successive
observation of a 6 cause the estimate to increase to
0.23 . After 500 rolls, the estimate settles down and
approaches 0 .16, the true probability of rolling a 6 .
As the sample size increased, the relative frequency
estimate approaches the true probability .

Annual flood probability estimates typically are
based on samples of 30 years of data or less .
Consequently, relative frequency estimates of
probability are greatly influenced by the flow in

How does the
Corps use
probability
estimates?

The size of a Corps of Engineers flood-control
project is selected to maximize the net economic
benefit . Net economic benefits is computed as

Project benefit
- project cost

net economic benefit (4)

In the case of flood control, the benefit of a project
is the damage reduced, which is computed as

Damage without any action
- damage with the project

damage reduced

	

(5)

In an urban setting, the damage typically is
considered a function of the annual maximum flow,
so for comparison of alternative size the net benefit
is expressed as an annual value . Thus, the best size
for the project is the size that maximizes

Annual damage without any action
- annual damage with the project
- annual project cost

net annual benefit

	

(6)
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The statistical distribution commonly used in the
U.S . for estimating the probability of a specified
annual flood peak is the log Pearson type III
(LP3) distribution . The distribution has three
parameter: a location parameter, a shape
parameter, and a scale parameter . Common
practice is to estimate these parameters with three
indices computed with the sample values : the
sample mean, standard deviation, and skew
coefficient . As with the roll of the die, a single
sample value can greatly influence the values of the
indices, which will, in turn, influence the
parameters, which will alter our estimate of the
relationship of probability of various flow
magnitudes .

To illustrate the impact of a small sample on
parameter estimates and the corresponding
probability estimates, consider the results of
experiments with annual peak flow data for the Dan
River. For that river, annual peak flow observations
from 1935 to 1982 (48 years) are available . If we
estimate the three LP3 distribution parameters with
all the available data and use these to compute the
annual peak flow value with probability = 0 .01,
we compute 71,700 cubic feet per second (cfs) .
(The 0.01-probability annual peak flow is often
called the 100-year flow .) Now consider what will
happen if we have just one less observation ; what if
the value for 1982 is not available? In that case, the
mean, standard deviation, and skew coefficient of
the sample are different, so we estimate different
values of the location, shape, and scale parameters .
The resulting parameter estimates yield an
estimated 0 .01-probability flow of 69,600 cfs . With
this small sample, addition of the observation for
1982 leads to an increase of 2,100 cfs in the
estimate of the 0.01-probability annual peak flow .

Fig . 4 shows how the estimated 0.01-probability
annual peak flow varies as a function of the sample
size for the Dan River . Such decreases or increases
with time are not uncommon .

.

Fig. 2 . -
Distribution of
Annual Maximum
Flow

one or two years . For example, if we observe
annual maximum flow exceeding 100,000 cfs in 2
or 30 years, we may conclude that such flow is
common . However, what appears in a small sample
to be 2 occurrences in 30 years may, in fact, be 2
occurrences in 300 years if we wait long enough to
observe 300 years of flow . Reasonable people
won't wait 300 years for data collection for a
water-resources project .

An alternative to estimating probability with
observed relative frequency is to estimate
probability by statistical inference . In that case,
we study a sample for clues about the behavior of
streamflows, and then we describe this behavior
with a mathematical function . In statistics, the
function is referred to as a statistical distribution .

A plot of the statistical distribution of annual
maximum streamflow for one stream is shown as
Fig. 2 .
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Probability of Exceeding Peak Flow

	

0

This plot represents a complex equation that relates
probability and flow magnitude . With the equation
or the plot, we can specify the streamflow
magnitude and estimate the probability, or we can
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specify the acceptable risk, in terms of probability,
and determine the flow for which we should design
a flood-control project .

To plot a statistical distribution, we have to
describe completely the curve : its shape, location,
scale, etc . These characteristics are defined by the
parameters of the distribution, and they are
estimated from a sample . The basic assumption is
that the estimates are representative of the entire
parent population, so the statistical distribution can
be used to estimate probability of future events .

We are faced with two fundamental problems in
developing an estimate of the true statistical
distribution from an observed sample (Fig . 2) .

1 . The form of the parent population distribution is
never known with certainty, so we don't know if
we picked the correct form of the equation from
which the plot is drawn .

2. The parameters that represent the parent
population must be estimated from a small sample .

To understand better these problems, consider
again rolling a die . With a true die with unique
faces, we know theoretically that the statistical
distribution which defines the probability of rolling
any value is

Probability =
I

number of faces
(3)

In this distribution, the number of faces is a
parameter which must be estimated from a sample
of the parent population . With 6 faces, the
probability is 1/6 ; with 8 faces, the probability is
1/8, and so on .

Suppose that we couldn't examine the die to count
the faces, but that we required an estimate of the

Fig. 3. - Estimates
of Probability of
Rolling a 6

probability of rolling a 6 with the die . We would
roll the die, determine the number of unique faces
that we have seen, use this as an estimate of the
parameter, and solve Eq . 3 to estimate the
probability of rolling a 6 .
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Sample Size

Fig . 3 shows the results of an experiment in which
we rolled a die, estimated the parameter based on
the number of faces seen, and then used this
parameter estimate with Eq . 3 to estimate the
probability of rolling a 6 . The first roll shows one
face of the die, so our first estimate is that the die
has only one face . This yields an initial estimate
that the probability is 1/1 or 1 .00. As the die is
rolled more, that is, as our sample grows, the
estimate of the parameter changes, as does our
estimate of the probability .

After 16 rolls of die have been observed, and the
probability is estimated as 1/6. More rolls do not
turn up more faces, so we feel fairly confident that
the estimates are reliable . However, we have no
guarantee that a seventh face won't appear after
100 rolls . If we bet the farm that the probability is
1/6, we may regret that decision .

7
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The statistical distribution commonly used in the
U.S . for estimating the probability of a specified
annual flood peak is the log Pearson type III
(LP3) distribution . The distribution has three
parameter: a location parameter, a shape
parameter, and a scale parameter . Common
practice is to estimate these parameters with three
indices computed with the sample values : the
sample mean, standard deviation, and skew
coefficient . As with the roll of the die, a single
sample value can greatly influence the values of the
indices, which will, in turn, influence the
parameters, which will alter our estimate of the
relationship of probability of various flow
magnitudes .

To illustrate the impact of a small sample on
parameter estimates and the corresponding
probability estimates, consider the results of
experiments with annual peak flow data for the Dan
River. For that river, annual peak flow observations
from 1935 to 1982 (48 years) are available . If we
estimate the three LP3 distribution parameters with
all the available data and use these to compute the
annual peak flow value with probability = 0 .01,
we compute 71,700 cubic feet per second (cfs) .
(The 0.01-probability annual peak flow is often
called the 100-year flow .) Now consider what will
happen if we have just one less observation ; what if
the value for 1982 is not available? In that case, the
mean, standard deviation, and skew coefficient of
the sample are different, so we estimate different
values of the location, shape, and scale parameters .
The resulting parameter estimates yield an
estimated 0 .01-probability flow of 69,600 cfs . With
this small sample, addition of the observation for
1982 leads to an increase of 2,100 cfs in the
estimate of the 0.01-probability annual peak flow .

Fig . 4 shows how the estimated 0.01-probability
annual peak flow varies as a function of the sample
size for the Dan River . Such decreases or increases
with time are not uncommon .
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Fig. 2 . -
Distribution of
Annual Maximum
Flow

one or two years . For example, if we observe
annual maximum flow exceeding 100,000 cfs in 2
or 30 years, we may conclude that such flow is
common . However, what appears in a small sample
to be 2 occurrences in 30 years may, in fact, be 2
occurrences in 300 years if we wait long enough to
observe 300 years of flow . Reasonable people
won't wait 300 years for data collection for a
water-resources project .

An alternative to estimating probability with
observed relative frequency is to estimate
probability by statistical inference . In that case,
we study a sample for clues about the behavior of
streamflows, and then we describe this behavior
with a mathematical function . In statistics, the
function is referred to as a statistical distribution .

A plot of the statistical distribution of annual
maximum streamflow for one stream is shown as
Fig. 2 .
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This plot represents a complex equation that relates
probability and flow magnitude . With the equation
or the plot, we can specify the streamflow
magnitude and estimate the probability, or we can
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good estimate. Now imagine that on the second try,

	

Fig. 4 . - Estimates
I roll a 2 . The relative frequency now is 1/2, and
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the probability estimate is 1/2 or 0 .5 . The estimate

	

probability Flow,
still is not very good, but it is getting better .

	

Dan River

Fig . 1 shows the results of an experiment in which
we rolled a die thousands of times and applied Eq .
1 after each roll to compute the relative frequency
estimate of the probability of rolling a 6 . In this
figure, the relative frequency is plotted as a
function of the number of rolls . In these trials, each
success (a roll of a 6) has a significant effect on the
computed. relative frequency. Notice, for example,
that in the first 50 or so rolls, a few successive
observation of a 6 cause the estimate to increase to
0.23 . After 500 rolls, the estimate settles down and
approaches 0 .16, the true probability of rolling a 6 .
As the sample size increased, the relative frequency
estimate approaches the true probability .

Annual flood probability estimates typically are
based on samples of 30 years of data or less .
Consequently, relative frequency estimates of
probability are greatly influenced by the flow in

How does the
Corps use
probability
estimates?

The size of a Corps of Engineers flood-control
project is selected to maximize the net economic
benefit . Net economic benefits is computed as

Project benefit
- project cost

net economic benefit (4)

In the case of flood control, the benefit of a project
is the damage reduced, which is computed as

Damage without any action
- damage with the project

damage reduced

	

(5)

In an urban setting, the damage typically is
considered a function of the annual maximum flow,
so for comparison of alternative size the net benefit
is expressed as an annual value . Thus, the best size
for the project is the size that maximizes

Annual damage without any action
- annual damage with the project
- annual project cost

net annual benefit

	

(6)
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But, the damage reduced by a project of any size
varies randomly from year to year because the flow
varies randomly . For example, a levee project
designed to eliminate all damage for flows of
100,000 cfs is really larger than required if the flow
is only 50,000 cfs. This is a dilemma : how should
the annual damage be estimated, given that it
changes randomly?

The procedure used by the Corps to estimate annual
damage is expected-value analysis . This risk-based
procedure computes average annual damage
considering all possible flow magnitudes, the
damage corresponding to each, and the estimated
probability of occurrence . The damage is weighed
by the probability, and the results are totaled . For
example, the damage due to the 0 .01-probability
flow is weighed by 0 .01, and the damage due to
the 0 .10-probability flow is weighed by 0 .10. This
weighs the damage due to rare events less than the
damage due to frequent events. The results, the
expected annual damage, is the average yearly
damage. With this procedure, the best size for the
project is the size that maximizes .

Expected annual damage without any action
- expected annual damage with the project
- annual project cost

net annual benefit

	

(7)

What does this

	

The historical frequency of flooding may not
mean to you?

	

adequately represent the probability of future
flooding. Our intuition may deceive us . If we have
lived near a stream, we often feel that we have a
good knowledge of historical floods . But as the
experiments with the die demonstrate, 10, 20, or
even 30 years of knowledge may not be sufficient
to draw reliable conclusions about probability . A
project that is designed so that the expected annual
damage-reduction exceeds the cost may seem
excessively large in scale, based on our limited
exposure . On the other hand, damaging floods in

I

set of flows that have been observed in the past .
The goal is to quantify the risk of future flooding
based on these observations of historical flooding .

The simplest approach to probability estimation
with historical data is to assume that the probability
of an event occurring equals the relative frequency
with which the event occurs historically . The
relative frequency of an event can be defined as

number of actual occurrences
Relative frequency =	 (1)

number of possible occurrences

Suppose, for example, that damage in an area
adjacent to a stream begins when flow in the stream
exceeds 100,000 cubic feet per second (cfs) . To
estimate the probability that the annual maximum
flow will exceed this value, we could tabulate the
maximum value for each year, count the years in
which the flow exceeds 100,000 cfs, and divide by
the total number of years for which we have
observations . For example, if the maximum flow
for two years of the last 100 years exceeded
100,000 cfs, we would estimate the annual
probability of exceeding 100,000 cfs as 2/100 or
0.02 .

The difficulty with estimating flood probability
with the relative frequency approach can be
illustrated with a simple example : estimating with
the relative frequency the probability of rolling a 6
with an honest, 6-sided die . In this case, we know
that the true probability is 1/6 = 0 .1666, so the
error in our estimates is easy to see . The relative
frequency of rolling a 6 with the die is defined as

number of times 6 is rolled
Relative frequency =	(2)

number of times the die is rolled

If on the first try, I roll a 6, the relative frequency,
according to Eq . 2 is 1/1 . We estimate the
probability of rolling a 6 as 1 . This is not a very
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How is the
probability of
flooding
estimated?

levee overtopping . The decision depends on my
perception of the benefits and my aversion to the
risk .

Probability estimates of undesirable events can be
determined by

1 . Subjective weighing . If you asked a
geologist to estimate the probability that you will
find rock when you dig in your yard to install a
new water line, the estimate provided is likely to be
a subjective weighing of the probability, based on
experience and intuition .

2. Analysis of the probabilities of all minor
events that contribute to the occurrence of
undesirable event . An example of this is
estimation of the probability of a nuclear power
plant accident. To make such an estimate, analysts
define all the separate events that could lead to an
accident, estimate the probability of each, and add
the probabilities .

3 . Observation of what has happened in the
past . If the event has occurred in the past, we can
use this information to estimate the likelihood that
it will occur in the future . This is the approach
commonly used to estimate probability of flooding .

Estimating the probability of flooding from
historical data is similar to assembling a jigsaw
puzzle, without knowledge beforehand of the
picture to be produced when assembly is complete .
With the puzzle, we draw randomly from the
puzzle box a single piece and guess the object
shown and the shape of the puzzle . Then we try to
assemble the puzzle pieces with this guess in mind .
In statistical jargon, the entire set of unassembled
pieces is the parent population, and each
individual piece that we select is a sample of the
parent population .

In the case of flooding, the parent population is the
entire range of flow that could occur . A sample is a

two successive years may not justify a large
expenditure if the annual probability of these floods
is low .

The estimates of the flooding probability with a
statistical distribution flooding are our best
estimates, based on short records . Just as we may
draw an incorrect conclusion regarding a jigsaw
puzzle picture if we have only a few pieces of the
puzzle, so may we draw an incorrect conclusion
regarding the statistical distribution of flow . Even if
we draw the correct conclusion regarding the
distribution, we may estimate incorrectly one or
more of the parameters . With a longer record, we
have more confidence in our conclusions .

The selected project scale may, in fact, not be
the best over the long term. Project scale is a
function of flow probability estimates which are
used in the expected-value analysis . If these
estimates are incorrect, the scale selected may not
be the best, and the net benefit of the project may
be less than anticipated . The return on investment,
in that case, will also be less than expected .

Economic analysis based on statistical analysis is
not the sole criterion for plan formulation . The
Corps of Engineers historically has recognized the
limits on statistical analysis, and has incorporated
additional considerations in its water-resources
development program . For example, if the risk of
loss of life is significant, a levee may be designed
to provide a higher level of protection than justified
economically .
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